Response Characteristics of a Buoyancy-Driven Sea
نویسندگان
چکیده
The authors consider the flow in a semienclosed sea, or basin, subjected to a destabilizing surface buoyancy flux and separated from a large adjoining reservoir by a sill. A series of numerical experiments were conducted to quantify the energetics of the flow within the basin, that is, the amount of kinetic and potential energy stored within the basin and the rate at which these quantities are transported to and from the reservoir via the exchange flow over the sill. The numerical experiments were formulated at laboratory scales and conducted using a boundary-fitting, clustered grid to resolve the entrainment and mixing processes within the flow and to facilitate quantitative comparison with previous laboratory experiments. Volume and boundary integrated energetics were computed for both steady and time-varying flows. In the steady-state limit, the rate of energy flux through the surface is balanced by dissipation within the basin and advection of potential energy over the sill and into the reservoir. The analyses focus primarily on this latter quantity because it is closely related to the outflow density and volume transport in two-layered exchange flows. Scaling laws relating the energetics of the flow to the surface buoyancy flux and the geometrical scales of the basin–sill system are derived and validated using the numerical results. A second set of experiments was conducted to quantify the transient energetics in response to a sudden change in the surface forcing. These results, combined with a linear impulse–response analysis, were used to derive a general expression describing the advection of potential energy across the sill for periodically forced systems. The analytical predictions are shown to compare favorably with directly simulated flows and to be reasonably consistent with limited field observations of the seasonal variability through the Strait of Bab al Mandab.
منابع مشابه
Effects of Viscosity Variations on Buoyancy-Driven Flow from a Horizontal Circular Cylinder Immersed in Al2O3-Water Nanofluid
The buoyancy-driven boundary-layer flow from a heated horizontal circular cylinder immersed in a water-based alumina (Al2O3) nanofluid is investigated using variable properties for nanofluid viscosity. Two different viscosity models are utilized to evaluate heat transfer enhancement from a cylinder. Exact analytic solutions of the problem are attained employing a novel...
متن کاملSTUDY OF OIL SPILL ON THE SEA SURFACE IN THE PRESENCE OF THERMAL AND CONCENTRATION BUOYANCY EFFECTS
Pollution occurs when the concentration of various chemical or biological constituents exceed a level implying negative impact on amenities, the eco-system, resources and human health. Oil spills are the serious environmental hazards which often exhibit long-term impacts. The main objective of response to an oil spill is to reduce its impact on nature and human health. This paper allows us to...
متن کاملIrreversibility Analysis of MHD Buoyancy-Driven Variable Viscosity Liquid Film along an Inclined Heated Plate Convective Cooling
Analysis of intrinsic irreversibility and heat transfer in a buoyancy-driven changeable viscosity liquid along an incline heated wall with convective cooling taking into consideration the heated isothermal and isoflux wall is investigated. By Newton’s law of cooling, we assumed the free surface exchange heat with environment and fluid viscosity is exponentially dependent on temperature. Appropr...
متن کاملInvestigation of Heat Transfer Enhancement or Deterioration of Variable Properties Al2O3-EG-water Nanofluid in Buoyancy Driven Convection
In this study, the natural convection heat transfer of variable properties Al2O3-EG-water nanofluid in a differentially heated rectangular cavity has been investigated numerically. The governing equations, for a Newtonian fluid, have been solved numerically with a finite volume approach. The influences of the pertinent parameters such as Ra in the range of 103-107 and volume fraction of nanopar...
متن کاملBuoyancy driven heat transfer of a nanofluid in a differentially heated square cavity under effect of an adiabatic square baffle
Buoyancy driven heat transfer of Cu-water nanofluid in a differentially heated square cavity with an inner adiabatic square baffle at different positions is studied numerically. The left and right walls of the cavity are at temperatures of Th and Tc, respectively that Th > Tc, while the horizontal walls are insulated. The governing equations are discretized using the finite volume method while ...
متن کاملInfluence of Magnetic Wire Positions on free convection of Fe3O4-Water nanofluid in a Square Enclosure Utilizing with MAC Algorithm
The augment of heat transfer and fluid of buoyancy-driven flow of Fe3O4-Water nanofluid in a square cavity under the influence of an external magnetic field is studied numerically. Cold temperature is applied on the side (vertical) walls and high temperature is imposed on the bottom wall while the top wall is kept at thermally insulated. The governing non-dimensional differential equations are ...
متن کامل